If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+32t=0
a = 8; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·8·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*8}=\frac{-64}{16} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*8}=\frac{0}{16} =0 $
| 2x(6x-6)=4(3x-2) | | v+–6v+–11=4 | | 3(z+1)-5=5z+2 | | -6x+6=-3x+3 | | 120=-5x+15+3(x-5) | | 4q−11=9 | | 120=5x+15+3(x-3) | | 2/3r-2=3/5r+1/3 | | -42=-6(v-91) | | 80x=600 | | 15-2=2x+3 | | 23-8x=-1-2x | | X=-4/5y+3/4 | | 9+2n=45 | | (17x+14)^+(4x-2)^=180 | | s/6-10=-6 | | 8x+11=5x-4 | | 2(m-12)+6=22 | | 7s-22=76 | | 6f+3f+2=38 | | 91=7(h-83) | | (r-6)/3=4 | | 51.98+0.17x=57.98+0.15x | | 10(q+43)=-100 | | y/6+47=57 | | 2/5y-7=3 | | –2y−–9y=14 | | 19x+2+15x-12=6x | | 51=15+9z | | 52+2x=5 | | F=43f+2 | | 2*x-8=7 |